PAM4

PAM4

Open19简化了数据中心的安装

技术分享atangge 发表了文章 • 0 个评论 • 1764 次浏览 • 2019-12-30 07:45 • 来自相关话题

Open19 Foundation开发了一种服务器设计解决方案,可以使数据中心部署更快,更轻松且更便宜。





 
Open19 Foundation正在推进一项新的数据中心设计标准,该标准将显着降低硬件成本和设置或升级服务器所需的时间。这个简化的硬件平台包括三个主要元素:砖笼,电源架和网络交换机,它们支持四种不同的砖形尺寸,操作员可以快速轻松地插入它们。通过这种经济,高度灵活的数据中心设计选项,更多公司将能够访问边缘计算。

“ Open19的安装通过使用两种针对机架结构标准化的独立互连类型而得以简化:电源和数据。电缆已组装到机架中,可轻松安装组件或根据需要进行重新配置。尽管我们的结构化电缆通常在任何电源,交换机和服务器之前安装,但也可以在之后安装。” Amphenol ICC市场总监Brent Peterman说。Amphenol与Molex一起提供用于网络组件(例如服务器,交换机和电源架)的电源互连,以及在机架中连接它们的电缆线束。

该协议最初是在LinkedIn平台上进行的演练,俄勒冈州和德克萨斯州的LinkedIn服务器以及其他设施已成功实现了硬件(LinkedIn是Microsoft公司)。Open19标准是与包括Amphenol ICC和Molex在内的众多数据和电子公司共同开发的,它对数据中心服务器,交换机和电源架中使用的电源连接器和电缆组件具有重要意义。要了解有关使用的组件的更多信息,请访问Molex和Amphenol ICC网站上的Open19 Foundation Marketplace和Open19资源页面。

我们在Molex与Amphenol ICC的高性能铜组件新产品开发经理Peterman和Liz Hardin进行了交谈,了解Open19将为计算机带来什么。

连接器供应商:Open19对服务器内使用的连接器有何影响?

Liz Hardin: 服务器中使用的Open19连接器在盲目的接口中提供了出色的性能(每通道高达56G PAM4)。

布伦特·彼得曼(Brent Peterman): 定义用于Open19的电源接口的重点是坚固,盲配合功能,简单的卡扣式电缆到机架安装以及作为标准产品提供的可用性。只要他们使用定义的连接器接口,实现者就可以利用Open19的灵活性。
 
Open19如何促进向边缘计算的发展?

BP: Open19提供了灵活的组件交换方式,使操作员可以轻松配置机架。这将提高共享数据中心的功能,并带来边缘计算的更多增长。

LH: 后部连接使安装额外容量或更换产品极为容易。安装程序只需滑入一台新服务器,将其闩锁,然后再移至下一台服务器即可。Open19的创始人Yuval Bachar [LinkedIn的首席工程师,数据中心架构以及Open19 Foundation的总裁兼董事会主席]表示,这样做的目的是使邮递员能够轻松交付和安装新服务器!





安费诺的CoolPower 2×1引脚连接器

Open19是为较小的数据中心设计的。为什么较大的中心采用它?

BP: Open 19非常适合较小的数据中心,但是组件的灵活性和它所带来的广阔市场也同样适用于较大的数据中心。

LH: 机架部署方法在硬件方面具有拥有成本优势,并通过减少整体人工来节省成本。较大的数据中心正在观察此增量,并发现该方法具有吸引力。

连接器公司如何影响像Open19这样的标准组织?

BP:重要的是加入组织,成为一个积极的贡献者,并支持其他项目成员。Amphenol支持概念验证,并与早期的实施者,机架提供者和集成商紧密合作。

LH: 我认为描述这种互动的最好方法是协作,不同的专家将他们的技能贡献给整个目标。Molex拥有连接器方面的专业知识和知识,可帮助您确定哪些工具最适合共同实现目标。

Open19如何与(或替代)现有数据中心标准(例如ANSI / TIA 942或EN 50600)一起工作?

BP: Open19的设计符合现有的电子行业联盟(EIA)19英寸机架标准。期望这些不同的标准将根据该数据中心的特定需求而继续保持下去。

LH: Open19绝对不是替代品,而只是解决相似问题集的另一种方式。





用于数据中心的Amphenol电缆组件

随着标准的发展,Open19是否正在推动新连接产品的创新?

LH: Open19正在构想一种不同的机架连接方式,该方式可以通过缩短总通道长度(从传统的机架顶(TOR)切换到行中(MOR))来帮助优化后代的性能。此外,关键目标之一是通过减少机架抬起所需的总时间来降低成本。这有助于为客户实现快速连接。我们希望通过将连接预安装到机架的后部来简化边缘使用。

Open19基金会表示2019年是采用之年。行业准备好了吗?

LH:该行业正在到那里-我认为这与任何重大转变相似。从VHS到DVD的转变不是立即发生的,但是最终,消费者对这种转变感到满意,并且所提供的优势和DVD的现状。我认为,随着时间的推移,Open19提出的方法将变得司空见惯。

BP:安费诺已准备就绪。我们已经将产品交付给最初采用者,并期待更多产品。
 
【摘自Bishop杂志,作者:Amy Goetzman ,August 20, 2019】
 
  查看全部
Open19 Foundation开发了一种服务器设计解决方案,可以使数据中心部署更快,更轻松且更便宜。

Open19-Lead-image-768x432.jpg

 
Open19 Foundation正在推进一项新的数据中心设计标准,该标准将显着降低硬件成本和设置或升级服务器所需的时间。这个简化的硬件平台包括三个主要元素:砖笼,电源架和网络交换机,它们支持四种不同的砖形尺寸,操作员可以快速轻松地插入它们。通过这种经济,高度灵活的数据中心设计选项,更多公司将能够访问边缘计算。

“ Open19的安装通过使用两种针对机架结构标准化的独立互连类型而得以简化:电源和数据。电缆已组装到机架中,可轻松安装组件或根据需要进行重新配置。尽管我们的结构化电缆通常在任何电源,交换机和服务器之前安装,但也可以在之后安装。” Amphenol ICC市场总监Brent Peterman说。Amphenol与Molex一起提供用于网络组件(例如服务器,交换机和电源架)的电源互连,以及在机架中连接它们的电缆线束。

该协议最初是在LinkedIn平台上进行的演练,俄勒冈州和德克萨斯州的LinkedIn服务器以及其他设施已成功实现了硬件(LinkedIn是Microsoft公司)。Open19标准是与包括Amphenol ICC和Molex在内的众多数据和电子公司共同开发的,它对数据中心服务器,交换机和电源架中使用的电源连接器和电缆组件具有重要意义。要了解有关使用的组件的更多信息,请访问Molex和Amphenol ICC网站上的Open19 Foundation Marketplace和Open19资源页面。

我们在Molex与Amphenol ICC的高性能铜组件新产品开发经理Peterman和Liz Hardin进行了交谈,了解Open19将为计算机带来什么。

连接器供应商:Open19对服务器内使用的连接器有何影响?

Liz Hardin: 服务器中使用的Open19连接器在盲目的接口中提供了出色的性能(每通道高达56G PAM4)。

布伦特·彼得曼(Brent Peterman): 定义用于Open19的电源接口的重点是坚固,盲配合功能,简单的卡扣式电缆到机架安装以及作为标准产品提供的可用性。只要他们使用定义的连接器接口,实现者就可以利用Open19的灵活性。
 
Open19如何促进向边缘计算的发展?

BP: Open19提供了灵活的组件交换方式,使操作员可以轻松配置机架。这将提高共享数据中心的功能,并带来边缘计算的更多增长。

LH: 后部连接使安装额外容量或更换产品极为容易。安装程序只需滑入一台新服务器,将其闩锁,然后再移至下一台服务器即可。Open19的创始人Yuval Bachar [LinkedIn的首席工程师,数据中心架构以及Open19 Foundation的总裁兼董事会主席]表示,这样做的目的是使邮递员能够轻松交付和安装新服务器!

Amphenol-CoolPower-2x1-Pin-Connector-768x529.jpg

安费诺的CoolPower 2×1引脚连接器

Open19是为较小的数据中心设计的。为什么较大的中心采用它?

BP: Open 19非常适合较小的数据中心,但是组件的灵活性和它所带来的广阔市场也同样适用于较大的数据中心。

LH: 机架部署方法在硬件方面具有拥有成本优势,并通过减少整体人工来节省成本。较大的数据中心正在观察此增量,并发现该方法具有吸引力。

连接器公司如何影响像Open19这样的标准组织?

BP:重要的是加入组织,成为一个积极的贡献者,并支持其他项目成员。Amphenol支持概念验证,并与早期的实施者,机架提供者和集成商紧密合作。

LH: 我认为描述这种互动的最好方法是协作,不同的专家将他们的技能贡献给整个目标。Molex拥有连接器方面的专业知识和知识,可帮助您确定哪些工具最适合共同实现目标。

Open19如何与(或替代)现有数据中心标准(例如ANSI / TIA 942或EN 50600)一起工作?

BP: Open19的设计符合现有的电子行业联盟(EIA)19英寸机架标准。期望这些不同的标准将根据该数据中心的特定需求而继续保持下去。

LH: Open19绝对不是替代品,而只是解决相似问题集的另一种方式。

CoolPower-Cable-Assembly-12RU-768x538.png

用于数据中心的Amphenol电缆组件

随着标准的发展,Open19是否正在推动新连接产品的创新?

LH: Open19正在构想一种不同的机架连接方式,该方式可以通过缩短总通道长度(从传统的机架顶(TOR)切换到行中(MOR))来帮助优化后代的性能。此外,关键目标之一是通过减少机架抬起所需的总时间来降低成本。这有助于为客户实现快速连接。我们希望通过将连接预安装到机架的后部来简化边缘使用。

Open19基金会表示2019年是采用之年。行业准备好了吗?

LH:该行业正在到那里-我认为这与任何重大转变相似。从VHS到DVD的转变不是立即发生的,但是最终,消费者对这种转变感到满意,并且所提供的优势和DVD的现状。我认为,随着时间的推移,Open19提出的方法将变得司空见惯。

BP:安费诺已准备就绪。我们已经将产品交付给最初采用者,并期待更多产品。
 
【摘自Bishop杂志,作者:Amy Goetzman ,August 20, 2019】
 
 

连接器如何提供Tb级(Terabit)速度?

技术分享hehe 发表了文章 • 0 个评论 • 2260 次浏览 • 2017-07-04 18:52 • 来自相关话题

随着IoT驱动更快的网络,对Tb级(Terabit,兆兆比特,太比特)速度需求近在眼前。

自从第一台计算机的发展以来,对数据传输速度的加快一直是一个假设的目标。以每秒千比特(kb / s)的速率传输的信息,演化为每秒兆比特(Mb / s),它定义了当今许多通信和计算设备的传输速率。每一个向更高速度的重大转变都发出警告:铜的相互连接的支配地位即将结束,而光纤将很快统治世界。物理学定律似乎表明,在几个Gb / s的范围之外,铜超过几英寸的通道会被削弱,并被扭曲到无用的程度,但这并不是完全正确的。





随着信号速度的提高,工程师们继续寻找延长铜的寿命的方法,这使专家们很困惑。 与大多数行业类似,电子设备的设计师和制造商尽其所能降低风险。 在许多情况下,包括尽可能长时间地保持已知技术。 与铜互连相关联的性能和制造工艺,从电缆组件到嵌入印刷电路板(PCB)的金手指(箔迹线),已经被高度改进并使用多年。人们希望继续使用铜代替另一种方法,这可能引入一种新的未知因素,这也为继续与这些“魔鬼”工程师们呆在一起提供了强大的动力。

电路设计人员认识到,从大约1Gb / s开始,电路表现为传输线,而不是遵循欧姆定律。 这种实现迎来了几个设计变化。 电路开始与受控阻抗匹配。 单端信令让位给低电压差分信号。 在PCB设计中更加重视信号线路和接地层的布线。 更多的层专门用于信号隔离和配电。 电镀通孔变得更小并被回钻以最小化短截线。 标准FR-4环氧树脂板材被更高性能和更高成本的层压板代替,铜线迹的表面粗糙度以及层压板的吸湿性等特征成为行业研讨会的热门话题。

半导体制造商做出了重大改进,以实现更快的传输速率。 芯片开始整合信号处理功能,如补偿和均衡。 重新定标器和前向纠错(FEC)大大延长了铜高速通道的长度和保真度。 眼图定义了可接受的通道性能,而S参数数据成为精确模拟高速电路的关键要求。 所有这些创新都将铜通道的实际带宽推向了50 + Gb / s。 作为回应,工程师不再试图预测铜的消亡。

那么,行业从该走向何方呢?对于更快速度的持续需求,几乎毫无疑问。超级计算机是更快速度的明显候选者,但电信和数据中心的高速通信网络是最大的市场应用。全球每年的IP流量已经超过了一个zettabyte(即:即一个百万亿byte,1021个或一千万亿字节),而且只会继续增长。流媒体高清视频、云计算和将在互联网上连接的数百万新设备的结合将要求更快的网络。事实上,100Gb的以太网(GbE)已经发展到200和400GbE,而以太网路线图在2020年之后的某个时间将开发一个terabit以太网。

在短期内,从非归零(NRZ)向PAM4信号发送信号的过渡将允许设计师们短暂停留,并提供更多的时间来学习如何设计可靠的50 + Gb / s NRZ信号。在未来,100Gb的NRZ信号是可能的,但目前大家还没有明确的共识。今天必须交付100Gb / s的设计师使用聚合通道来实现这个级别网络。

来自多家领先供应商的旗舰背板和夹层连接器已经证明了使用Pam4和NRZ可以在56Gb / s下运行的能力。 在最近的DesignCon 2017会议上发表的评论表明,这些制造商预计目前的背板连接器技术至少会有一个更大的发展。

可插拔I / O由于需要更小的面板中更快的数据传输速率而继续成为关注的焦点。 供应商正在响应现有可插拔I / O的扩展和修改,例如SFP和QSFP。 例如,QSFP28(4 x 28Gb / s)是今天实现100Gb / s以太网的逻辑选择。 TE Connectivity已经将他们的microQSFP模块化了,该芯片在比SFP连接器稍大的封装中封装了4个28Gb / s通道,以实现更高的封装密度。 另外,一个新的双密度QSFP运行八个25Gb / s通道NRZ,用于200Gb / s应用,或八个50Gb / s PAM4通道,达到400Gb / s聚合。 CDFP可插拔式是一个16通道的25Gb / s连接器,提供400Gb / s,与直接铜以及单模和多模光纤接口兼容。





 
在较小外壳中封装高速电路相关的发热问题引入了额外的设计挑战。 可插拔连接器制造商正在应对具有集成散热器和通风外壳的散热增强型PCB支架。

供应商一直在推动人们对铜的认知极限。最近推出的OSFP可插拔提供了八个通道的50Gb / s,以实现聚合的400Gb / s。 减小的外形尺寸可在标准1U面板上安装多达32个OSFP端口。 结果是总的I / O能力为12.8Tbs / s。 至少可以满足下一代或两代设备的需求。除此之外,光纤可能是唯一可行的解决方案。





 
随着我们超过100Gb / s的带宽,光传输将成为首选的解决方案。 CFP8可插拔光电收发器模块已经被证明可以提供400Gb / s的PAM4。 除了更大的信号完整性,光信号可以比电信号传播得更远。 光缆的直径远远小于等效铜缆的直径,这是电缆超出设计能力的大型数据中心的重要属性。 信号延迟,串扰和偏斜也成为光通道中不太重要的因素。





 
Terabit数据传输即将到来。最近宣布的互连技术可以通过聚合多个通道来支持不断发展的以太网,Infiniband和INCITS标准。 未来可能最终要求单Tb通道。 如果是这样,材料研究,高级软件,硅光子学和信号处理将会改变,连接器制造商将在实现这一技术方面发挥不可或缺的作用。

【摘自Bishop杂志,作者:Robert Hult,May 23, 2017】
  查看全部
随着IoT驱动更快的网络,对Tb级(Terabit,兆兆比特,太比特)速度需求近在眼前。

自从第一台计算机的发展以来,对数据传输速度的加快一直是一个假设的目标。以每秒千比特(kb / s)的速率传输的信息,演化为每秒兆比特(Mb / s),它定义了当今许多通信和计算设备的传输速率。每一个向更高速度的重大转变都发出警告:铜的相互连接的支配地位即将结束,而光纤将很快统治世界。物理学定律似乎表明,在几个Gb / s的范围之外,铜超过几英寸的通道会被削弱,并被扭曲到无用的程度,但这并不是完全正确的。

homer-the-end-is-near.gif

随着信号速度的提高,工程师们继续寻找延长铜的寿命的方法,这使专家们很困惑。 与大多数行业类似,电子设备的设计师和制造商尽其所能降低风险。 在许多情况下,包括尽可能长时间地保持已知技术。 与铜互连相关联的性能和制造工艺,从电缆组件到嵌入印刷电路板(PCB)的金手指(箔迹线),已经被高度改进并使用多年。人们希望继续使用铜代替另一种方法,这可能引入一种新的未知因素,这也为继续与这些“魔鬼”工程师们呆在一起提供了强大的动力。

电路设计人员认识到,从大约1Gb / s开始,电路表现为传输线,而不是遵循欧姆定律。 这种实现迎来了几个设计变化。 电路开始与受控阻抗匹配。 单端信令让位给低电压差分信号。 在PCB设计中更加重视信号线路和接地层的布线。 更多的层专门用于信号隔离和配电。 电镀通孔变得更小并被回钻以最小化短截线。 标准FR-4环氧树脂板材被更高性能和更高成本的层压板代替,铜线迹的表面粗糙度以及层压板的吸湿性等特征成为行业研讨会的热门话题。

半导体制造商做出了重大改进,以实现更快的传输速率。 芯片开始整合信号处理功能,如补偿和均衡。 重新定标器和前向纠错(FEC)大大延长了铜高速通道的长度和保真度。 眼图定义了可接受的通道性能,而S参数数据成为精确模拟高速电路的关键要求。 所有这些创新都将铜通道的实际带宽推向了50 + Gb / s。 作为回应,工程师不再试图预测铜的消亡。

那么,行业从该走向何方呢?对于更快速度的持续需求,几乎毫无疑问。超级计算机是更快速度的明显候选者,但电信和数据中心的高速通信网络是最大的市场应用。全球每年的IP流量已经超过了一个zettabyte(即:即一个百万亿byte,1021个或一千万亿字节),而且只会继续增长。流媒体高清视频、云计算和将在互联网上连接的数百万新设备的结合将要求更快的网络。事实上,100Gb的以太网(GbE)已经发展到200和400GbE,而以太网路线图在2020年之后的某个时间将开发一个terabit以太网。

在短期内,从非归零(NRZ)向PAM4信号发送信号的过渡将允许设计师们短暂停留,并提供更多的时间来学习如何设计可靠的50 + Gb / s NRZ信号。在未来,100Gb的NRZ信号是可能的,但目前大家还没有明确的共识。今天必须交付100Gb / s的设计师使用聚合通道来实现这个级别网络。

来自多家领先供应商的旗舰背板和夹层连接器已经证明了使用Pam4和NRZ可以在56Gb / s下运行的能力。 在最近的DesignCon 2017会议上发表的评论表明,这些制造商预计目前的背板连接器技术至少会有一个更大的发展。

可插拔I / O由于需要更小的面板中更快的数据传输速率而继续成为关注的焦点。 供应商正在响应现有可插拔I / O的扩展和修改,例如SFP和QSFP。 例如,QSFP28(4 x 28Gb / s)是今天实现100Gb / s以太网的逻辑选择。 TE Connectivity已经将他们的microQSFP模块化了,该芯片在比SFP连接器稍大的封装中封装了4个28Gb / s通道,以实现更高的封装密度。 另外,一个新的双密度QSFP运行八个25Gb / s通道NRZ,用于200Gb / s应用,或八个50Gb / s PAM4通道,达到400Gb / s聚合。 CDFP可插拔式是一个16通道的25Gb / s连接器,提供400Gb / s,与直接铜以及单模和多模光纤接口兼容。

TE-microQSFP.gif

 
在较小外壳中封装高速电路相关的发热问题引入了额外的设计挑战。 可插拔连接器制造商正在应对具有集成散热器和通风外壳的散热增强型PCB支架。

供应商一直在推动人们对铜的认知极限。最近推出的OSFP可插拔提供了八个通道的50Gb / s,以实现聚合的400Gb / s。 减小的外形尺寸可在标准1U面板上安装多达32个OSFP端口。 结果是总的I / O能力为12.8Tbs / s。 至少可以满足下一代或两代设备的需求。除此之外,光纤可能是唯一可行的解决方案。

amphenol-osfp-pluggable.gif

 
随着我们超过100Gb / s的带宽,光传输将成为首选的解决方案。 CFP8可插拔光电收发器模块已经被证明可以提供400Gb / s的PAM4。 除了更大的信号完整性,光信号可以比电信号传播得更远。 光缆的直径远远小于等效铜缆的直径,这是电缆超出设计能力的大型数据中心的重要属性。 信号延迟,串扰和偏斜也成为光通道中不太重要的因素。

Yamaichi-CFP8-pluggable-optoelectronic-transceiver-module.gif

 
Terabit数据传输即将到来。最近宣布的互连技术可以通过聚合多个通道来支持不断发展的以太网,Infiniband和INCITS标准。 未来可能最终要求单Tb通道。 如果是这样,材料研究,高级软件,硅光子学和信号处理将会改变,连接器制造商将在实现这一技术方面发挥不可或缺的作用。

【摘自Bishop杂志,作者:Robert Hult,May 23, 2017】
 

Open19简化了数据中心的安装

技术分享atangge 发表了文章 • 0 个评论 • 1764 次浏览 • 2019-12-30 07:45 • 来自相关话题

Open19 Foundation开发了一种服务器设计解决方案,可以使数据中心部署更快,更轻松且更便宜。





 
Open19 Foundation正在推进一项新的数据中心设计标准,该标准将显着降低硬件成本和设置或升级服务器所需的时间。这个简化的硬件平台包括三个主要元素:砖笼,电源架和网络交换机,它们支持四种不同的砖形尺寸,操作员可以快速轻松地插入它们。通过这种经济,高度灵活的数据中心设计选项,更多公司将能够访问边缘计算。

“ Open19的安装通过使用两种针对机架结构标准化的独立互连类型而得以简化:电源和数据。电缆已组装到机架中,可轻松安装组件或根据需要进行重新配置。尽管我们的结构化电缆通常在任何电源,交换机和服务器之前安装,但也可以在之后安装。” Amphenol ICC市场总监Brent Peterman说。Amphenol与Molex一起提供用于网络组件(例如服务器,交换机和电源架)的电源互连,以及在机架中连接它们的电缆线束。

该协议最初是在LinkedIn平台上进行的演练,俄勒冈州和德克萨斯州的LinkedIn服务器以及其他设施已成功实现了硬件(LinkedIn是Microsoft公司)。Open19标准是与包括Amphenol ICC和Molex在内的众多数据和电子公司共同开发的,它对数据中心服务器,交换机和电源架中使用的电源连接器和电缆组件具有重要意义。要了解有关使用的组件的更多信息,请访问Molex和Amphenol ICC网站上的Open19 Foundation Marketplace和Open19资源页面。

我们在Molex与Amphenol ICC的高性能铜组件新产品开发经理Peterman和Liz Hardin进行了交谈,了解Open19将为计算机带来什么。

连接器供应商:Open19对服务器内使用的连接器有何影响?

Liz Hardin: 服务器中使用的Open19连接器在盲目的接口中提供了出色的性能(每通道高达56G PAM4)。

布伦特·彼得曼(Brent Peterman): 定义用于Open19的电源接口的重点是坚固,盲配合功能,简单的卡扣式电缆到机架安装以及作为标准产品提供的可用性。只要他们使用定义的连接器接口,实现者就可以利用Open19的灵活性。
 
Open19如何促进向边缘计算的发展?

BP: Open19提供了灵活的组件交换方式,使操作员可以轻松配置机架。这将提高共享数据中心的功能,并带来边缘计算的更多增长。

LH: 后部连接使安装额外容量或更换产品极为容易。安装程序只需滑入一台新服务器,将其闩锁,然后再移至下一台服务器即可。Open19的创始人Yuval Bachar [LinkedIn的首席工程师,数据中心架构以及Open19 Foundation的总裁兼董事会主席]表示,这样做的目的是使邮递员能够轻松交付和安装新服务器!





安费诺的CoolPower 2×1引脚连接器

Open19是为较小的数据中心设计的。为什么较大的中心采用它?

BP: Open 19非常适合较小的数据中心,但是组件的灵活性和它所带来的广阔市场也同样适用于较大的数据中心。

LH: 机架部署方法在硬件方面具有拥有成本优势,并通过减少整体人工来节省成本。较大的数据中心正在观察此增量,并发现该方法具有吸引力。

连接器公司如何影响像Open19这样的标准组织?

BP:重要的是加入组织,成为一个积极的贡献者,并支持其他项目成员。Amphenol支持概念验证,并与早期的实施者,机架提供者和集成商紧密合作。

LH: 我认为描述这种互动的最好方法是协作,不同的专家将他们的技能贡献给整个目标。Molex拥有连接器方面的专业知识和知识,可帮助您确定哪些工具最适合共同实现目标。

Open19如何与(或替代)现有数据中心标准(例如ANSI / TIA 942或EN 50600)一起工作?

BP: Open19的设计符合现有的电子行业联盟(EIA)19英寸机架标准。期望这些不同的标准将根据该数据中心的特定需求而继续保持下去。

LH: Open19绝对不是替代品,而只是解决相似问题集的另一种方式。





用于数据中心的Amphenol电缆组件

随着标准的发展,Open19是否正在推动新连接产品的创新?

LH: Open19正在构想一种不同的机架连接方式,该方式可以通过缩短总通道长度(从传统的机架顶(TOR)切换到行中(MOR))来帮助优化后代的性能。此外,关键目标之一是通过减少机架抬起所需的总时间来降低成本。这有助于为客户实现快速连接。我们希望通过将连接预安装到机架的后部来简化边缘使用。

Open19基金会表示2019年是采用之年。行业准备好了吗?

LH:该行业正在到那里-我认为这与任何重大转变相似。从VHS到DVD的转变不是立即发生的,但是最终,消费者对这种转变感到满意,并且所提供的优势和DVD的现状。我认为,随着时间的推移,Open19提出的方法将变得司空见惯。

BP:安费诺已准备就绪。我们已经将产品交付给最初采用者,并期待更多产品。
 
【摘自Bishop杂志,作者:Amy Goetzman ,August 20, 2019】
 
  查看全部
Open19 Foundation开发了一种服务器设计解决方案,可以使数据中心部署更快,更轻松且更便宜。

Open19-Lead-image-768x432.jpg

 
Open19 Foundation正在推进一项新的数据中心设计标准,该标准将显着降低硬件成本和设置或升级服务器所需的时间。这个简化的硬件平台包括三个主要元素:砖笼,电源架和网络交换机,它们支持四种不同的砖形尺寸,操作员可以快速轻松地插入它们。通过这种经济,高度灵活的数据中心设计选项,更多公司将能够访问边缘计算。

“ Open19的安装通过使用两种针对机架结构标准化的独立互连类型而得以简化:电源和数据。电缆已组装到机架中,可轻松安装组件或根据需要进行重新配置。尽管我们的结构化电缆通常在任何电源,交换机和服务器之前安装,但也可以在之后安装。” Amphenol ICC市场总监Brent Peterman说。Amphenol与Molex一起提供用于网络组件(例如服务器,交换机和电源架)的电源互连,以及在机架中连接它们的电缆线束。

该协议最初是在LinkedIn平台上进行的演练,俄勒冈州和德克萨斯州的LinkedIn服务器以及其他设施已成功实现了硬件(LinkedIn是Microsoft公司)。Open19标准是与包括Amphenol ICC和Molex在内的众多数据和电子公司共同开发的,它对数据中心服务器,交换机和电源架中使用的电源连接器和电缆组件具有重要意义。要了解有关使用的组件的更多信息,请访问Molex和Amphenol ICC网站上的Open19 Foundation Marketplace和Open19资源页面。

我们在Molex与Amphenol ICC的高性能铜组件新产品开发经理Peterman和Liz Hardin进行了交谈,了解Open19将为计算机带来什么。

连接器供应商:Open19对服务器内使用的连接器有何影响?

Liz Hardin: 服务器中使用的Open19连接器在盲目的接口中提供了出色的性能(每通道高达56G PAM4)。

布伦特·彼得曼(Brent Peterman): 定义用于Open19的电源接口的重点是坚固,盲配合功能,简单的卡扣式电缆到机架安装以及作为标准产品提供的可用性。只要他们使用定义的连接器接口,实现者就可以利用Open19的灵活性。
 
Open19如何促进向边缘计算的发展?

BP: Open19提供了灵活的组件交换方式,使操作员可以轻松配置机架。这将提高共享数据中心的功能,并带来边缘计算的更多增长。

LH: 后部连接使安装额外容量或更换产品极为容易。安装程序只需滑入一台新服务器,将其闩锁,然后再移至下一台服务器即可。Open19的创始人Yuval Bachar [LinkedIn的首席工程师,数据中心架构以及Open19 Foundation的总裁兼董事会主席]表示,这样做的目的是使邮递员能够轻松交付和安装新服务器!

Amphenol-CoolPower-2x1-Pin-Connector-768x529.jpg

安费诺的CoolPower 2×1引脚连接器

Open19是为较小的数据中心设计的。为什么较大的中心采用它?

BP: Open 19非常适合较小的数据中心,但是组件的灵活性和它所带来的广阔市场也同样适用于较大的数据中心。

LH: 机架部署方法在硬件方面具有拥有成本优势,并通过减少整体人工来节省成本。较大的数据中心正在观察此增量,并发现该方法具有吸引力。

连接器公司如何影响像Open19这样的标准组织?

BP:重要的是加入组织,成为一个积极的贡献者,并支持其他项目成员。Amphenol支持概念验证,并与早期的实施者,机架提供者和集成商紧密合作。

LH: 我认为描述这种互动的最好方法是协作,不同的专家将他们的技能贡献给整个目标。Molex拥有连接器方面的专业知识和知识,可帮助您确定哪些工具最适合共同实现目标。

Open19如何与(或替代)现有数据中心标准(例如ANSI / TIA 942或EN 50600)一起工作?

BP: Open19的设计符合现有的电子行业联盟(EIA)19英寸机架标准。期望这些不同的标准将根据该数据中心的特定需求而继续保持下去。

LH: Open19绝对不是替代品,而只是解决相似问题集的另一种方式。

CoolPower-Cable-Assembly-12RU-768x538.png

用于数据中心的Amphenol电缆组件

随着标准的发展,Open19是否正在推动新连接产品的创新?

LH: Open19正在构想一种不同的机架连接方式,该方式可以通过缩短总通道长度(从传统的机架顶(TOR)切换到行中(MOR))来帮助优化后代的性能。此外,关键目标之一是通过减少机架抬起所需的总时间来降低成本。这有助于为客户实现快速连接。我们希望通过将连接预安装到机架的后部来简化边缘使用。

Open19基金会表示2019年是采用之年。行业准备好了吗?

LH:该行业正在到那里-我认为这与任何重大转变相似。从VHS到DVD的转变不是立即发生的,但是最终,消费者对这种转变感到满意,并且所提供的优势和DVD的现状。我认为,随着时间的推移,Open19提出的方法将变得司空见惯。

BP:安费诺已准备就绪。我们已经将产品交付给最初采用者,并期待更多产品。
 
【摘自Bishop杂志,作者:Amy Goetzman ,August 20, 2019】
 
 

连接器如何提供Tb级(Terabit)速度?

技术分享hehe 发表了文章 • 0 个评论 • 2260 次浏览 • 2017-07-04 18:52 • 来自相关话题

随着IoT驱动更快的网络,对Tb级(Terabit,兆兆比特,太比特)速度需求近在眼前。

自从第一台计算机的发展以来,对数据传输速度的加快一直是一个假设的目标。以每秒千比特(kb / s)的速率传输的信息,演化为每秒兆比特(Mb / s),它定义了当今许多通信和计算设备的传输速率。每一个向更高速度的重大转变都发出警告:铜的相互连接的支配地位即将结束,而光纤将很快统治世界。物理学定律似乎表明,在几个Gb / s的范围之外,铜超过几英寸的通道会被削弱,并被扭曲到无用的程度,但这并不是完全正确的。





随着信号速度的提高,工程师们继续寻找延长铜的寿命的方法,这使专家们很困惑。 与大多数行业类似,电子设备的设计师和制造商尽其所能降低风险。 在许多情况下,包括尽可能长时间地保持已知技术。 与铜互连相关联的性能和制造工艺,从电缆组件到嵌入印刷电路板(PCB)的金手指(箔迹线),已经被高度改进并使用多年。人们希望继续使用铜代替另一种方法,这可能引入一种新的未知因素,这也为继续与这些“魔鬼”工程师们呆在一起提供了强大的动力。

电路设计人员认识到,从大约1Gb / s开始,电路表现为传输线,而不是遵循欧姆定律。 这种实现迎来了几个设计变化。 电路开始与受控阻抗匹配。 单端信令让位给低电压差分信号。 在PCB设计中更加重视信号线路和接地层的布线。 更多的层专门用于信号隔离和配电。 电镀通孔变得更小并被回钻以最小化短截线。 标准FR-4环氧树脂板材被更高性能和更高成本的层压板代替,铜线迹的表面粗糙度以及层压板的吸湿性等特征成为行业研讨会的热门话题。

半导体制造商做出了重大改进,以实现更快的传输速率。 芯片开始整合信号处理功能,如补偿和均衡。 重新定标器和前向纠错(FEC)大大延长了铜高速通道的长度和保真度。 眼图定义了可接受的通道性能,而S参数数据成为精确模拟高速电路的关键要求。 所有这些创新都将铜通道的实际带宽推向了50 + Gb / s。 作为回应,工程师不再试图预测铜的消亡。

那么,行业从该走向何方呢?对于更快速度的持续需求,几乎毫无疑问。超级计算机是更快速度的明显候选者,但电信和数据中心的高速通信网络是最大的市场应用。全球每年的IP流量已经超过了一个zettabyte(即:即一个百万亿byte,1021个或一千万亿字节),而且只会继续增长。流媒体高清视频、云计算和将在互联网上连接的数百万新设备的结合将要求更快的网络。事实上,100Gb的以太网(GbE)已经发展到200和400GbE,而以太网路线图在2020年之后的某个时间将开发一个terabit以太网。

在短期内,从非归零(NRZ)向PAM4信号发送信号的过渡将允许设计师们短暂停留,并提供更多的时间来学习如何设计可靠的50 + Gb / s NRZ信号。在未来,100Gb的NRZ信号是可能的,但目前大家还没有明确的共识。今天必须交付100Gb / s的设计师使用聚合通道来实现这个级别网络。

来自多家领先供应商的旗舰背板和夹层连接器已经证明了使用Pam4和NRZ可以在56Gb / s下运行的能力。 在最近的DesignCon 2017会议上发表的评论表明,这些制造商预计目前的背板连接器技术至少会有一个更大的发展。

可插拔I / O由于需要更小的面板中更快的数据传输速率而继续成为关注的焦点。 供应商正在响应现有可插拔I / O的扩展和修改,例如SFP和QSFP。 例如,QSFP28(4 x 28Gb / s)是今天实现100Gb / s以太网的逻辑选择。 TE Connectivity已经将他们的microQSFP模块化了,该芯片在比SFP连接器稍大的封装中封装了4个28Gb / s通道,以实现更高的封装密度。 另外,一个新的双密度QSFP运行八个25Gb / s通道NRZ,用于200Gb / s应用,或八个50Gb / s PAM4通道,达到400Gb / s聚合。 CDFP可插拔式是一个16通道的25Gb / s连接器,提供400Gb / s,与直接铜以及单模和多模光纤接口兼容。





 
在较小外壳中封装高速电路相关的发热问题引入了额外的设计挑战。 可插拔连接器制造商正在应对具有集成散热器和通风外壳的散热增强型PCB支架。

供应商一直在推动人们对铜的认知极限。最近推出的OSFP可插拔提供了八个通道的50Gb / s,以实现聚合的400Gb / s。 减小的外形尺寸可在标准1U面板上安装多达32个OSFP端口。 结果是总的I / O能力为12.8Tbs / s。 至少可以满足下一代或两代设备的需求。除此之外,光纤可能是唯一可行的解决方案。





 
随着我们超过100Gb / s的带宽,光传输将成为首选的解决方案。 CFP8可插拔光电收发器模块已经被证明可以提供400Gb / s的PAM4。 除了更大的信号完整性,光信号可以比电信号传播得更远。 光缆的直径远远小于等效铜缆的直径,这是电缆超出设计能力的大型数据中心的重要属性。 信号延迟,串扰和偏斜也成为光通道中不太重要的因素。





 
Terabit数据传输即将到来。最近宣布的互连技术可以通过聚合多个通道来支持不断发展的以太网,Infiniband和INCITS标准。 未来可能最终要求单Tb通道。 如果是这样,材料研究,高级软件,硅光子学和信号处理将会改变,连接器制造商将在实现这一技术方面发挥不可或缺的作用。

【摘自Bishop杂志,作者:Robert Hult,May 23, 2017】
  查看全部
随着IoT驱动更快的网络,对Tb级(Terabit,兆兆比特,太比特)速度需求近在眼前。

自从第一台计算机的发展以来,对数据传输速度的加快一直是一个假设的目标。以每秒千比特(kb / s)的速率传输的信息,演化为每秒兆比特(Mb / s),它定义了当今许多通信和计算设备的传输速率。每一个向更高速度的重大转变都发出警告:铜的相互连接的支配地位即将结束,而光纤将很快统治世界。物理学定律似乎表明,在几个Gb / s的范围之外,铜超过几英寸的通道会被削弱,并被扭曲到无用的程度,但这并不是完全正确的。

homer-the-end-is-near.gif

随着信号速度的提高,工程师们继续寻找延长铜的寿命的方法,这使专家们很困惑。 与大多数行业类似,电子设备的设计师和制造商尽其所能降低风险。 在许多情况下,包括尽可能长时间地保持已知技术。 与铜互连相关联的性能和制造工艺,从电缆组件到嵌入印刷电路板(PCB)的金手指(箔迹线),已经被高度改进并使用多年。人们希望继续使用铜代替另一种方法,这可能引入一种新的未知因素,这也为继续与这些“魔鬼”工程师们呆在一起提供了强大的动力。

电路设计人员认识到,从大约1Gb / s开始,电路表现为传输线,而不是遵循欧姆定律。 这种实现迎来了几个设计变化。 电路开始与受控阻抗匹配。 单端信令让位给低电压差分信号。 在PCB设计中更加重视信号线路和接地层的布线。 更多的层专门用于信号隔离和配电。 电镀通孔变得更小并被回钻以最小化短截线。 标准FR-4环氧树脂板材被更高性能和更高成本的层压板代替,铜线迹的表面粗糙度以及层压板的吸湿性等特征成为行业研讨会的热门话题。

半导体制造商做出了重大改进,以实现更快的传输速率。 芯片开始整合信号处理功能,如补偿和均衡。 重新定标器和前向纠错(FEC)大大延长了铜高速通道的长度和保真度。 眼图定义了可接受的通道性能,而S参数数据成为精确模拟高速电路的关键要求。 所有这些创新都将铜通道的实际带宽推向了50 + Gb / s。 作为回应,工程师不再试图预测铜的消亡。

那么,行业从该走向何方呢?对于更快速度的持续需求,几乎毫无疑问。超级计算机是更快速度的明显候选者,但电信和数据中心的高速通信网络是最大的市场应用。全球每年的IP流量已经超过了一个zettabyte(即:即一个百万亿byte,1021个或一千万亿字节),而且只会继续增长。流媒体高清视频、云计算和将在互联网上连接的数百万新设备的结合将要求更快的网络。事实上,100Gb的以太网(GbE)已经发展到200和400GbE,而以太网路线图在2020年之后的某个时间将开发一个terabit以太网。

在短期内,从非归零(NRZ)向PAM4信号发送信号的过渡将允许设计师们短暂停留,并提供更多的时间来学习如何设计可靠的50 + Gb / s NRZ信号。在未来,100Gb的NRZ信号是可能的,但目前大家还没有明确的共识。今天必须交付100Gb / s的设计师使用聚合通道来实现这个级别网络。

来自多家领先供应商的旗舰背板和夹层连接器已经证明了使用Pam4和NRZ可以在56Gb / s下运行的能力。 在最近的DesignCon 2017会议上发表的评论表明,这些制造商预计目前的背板连接器技术至少会有一个更大的发展。

可插拔I / O由于需要更小的面板中更快的数据传输速率而继续成为关注的焦点。 供应商正在响应现有可插拔I / O的扩展和修改,例如SFP和QSFP。 例如,QSFP28(4 x 28Gb / s)是今天实现100Gb / s以太网的逻辑选择。 TE Connectivity已经将他们的microQSFP模块化了,该芯片在比SFP连接器稍大的封装中封装了4个28Gb / s通道,以实现更高的封装密度。 另外,一个新的双密度QSFP运行八个25Gb / s通道NRZ,用于200Gb / s应用,或八个50Gb / s PAM4通道,达到400Gb / s聚合。 CDFP可插拔式是一个16通道的25Gb / s连接器,提供400Gb / s,与直接铜以及单模和多模光纤接口兼容。

TE-microQSFP.gif

 
在较小外壳中封装高速电路相关的发热问题引入了额外的设计挑战。 可插拔连接器制造商正在应对具有集成散热器和通风外壳的散热增强型PCB支架。

供应商一直在推动人们对铜的认知极限。最近推出的OSFP可插拔提供了八个通道的50Gb / s,以实现聚合的400Gb / s。 减小的外形尺寸可在标准1U面板上安装多达32个OSFP端口。 结果是总的I / O能力为12.8Tbs / s。 至少可以满足下一代或两代设备的需求。除此之外,光纤可能是唯一可行的解决方案。

amphenol-osfp-pluggable.gif

 
随着我们超过100Gb / s的带宽,光传输将成为首选的解决方案。 CFP8可插拔光电收发器模块已经被证明可以提供400Gb / s的PAM4。 除了更大的信号完整性,光信号可以比电信号传播得更远。 光缆的直径远远小于等效铜缆的直径,这是电缆超出设计能力的大型数据中心的重要属性。 信号延迟,串扰和偏斜也成为光通道中不太重要的因素。

Yamaichi-CFP8-pluggable-optoelectronic-transceiver-module.gif

 
Terabit数据传输即将到来。最近宣布的互连技术可以通过聚合多个通道来支持不断发展的以太网,Infiniband和INCITS标准。 未来可能最终要求单Tb通道。 如果是这样,材料研究,高级软件,硅光子学和信号处理将会改变,连接器制造商将在实现这一技术方面发挥不可或缺的作用。

【摘自Bishop杂志,作者:Robert Hult,May 23, 2017】